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7.13 Results  

The previously described code provided an example of how to classify Mnist 

images using RNNs. The code only evaluated accuracy for this example although 

you can evaluate for the other metrics as well. I leave that as an exercise to the 

reader. For comparison, I ran this code as written here an obtained classification 

accuracies as high as or higher than 97%-99%.   

  

7.14 Summary  

In this chapter Recurrent Neural Networks (RNNs) were presented and 

discussed. An example using the Mnist hand written digits data set was used for 

the analysis. Issues related to data representation and RNN architecture were also 

discussed.
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CHAPTER 8: GENERATIVE ADVERSARIAL 

NETWORKS  

In this section of the book I will cover Generative Adversarial Networks (GANs). 

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) are a first 

attempt at representing unsupervised problems in the context of games (e.g. 

GANs are modeled as a two player adversarial game). One of the biggest 

challenges we face with supervised learning is annotating the data. We cannot 

annotate automatically and without annotations we cannot train our learning 

models. But what if we could substitute the annotation of the data for something 

else? For instance, what if we could model the annotation task as a game or use 

other previous knowledge about the world as labels. These ideas are one of the 

main motivations for GANs.  

GANs are deep neural networks that consist of a generator network connected to 

a discriminator network. The discriminator network has training data and the 

generator network only has random or noise data as input. GANs are essentially 2 

player games where one player (the generator) creates synthetic data samples, 

while the second player (the discriminator) takes the generated sample and 

performs a classification.  

This classification is performed to determine if the synthetic sample is similar to 

the distribution of the discriminator’s training data. Since both networks are 

connected, the deep neural network (GAN) can learn to generate better synthetic 

samples with the help of the discriminator’s output. Basically, the discriminator 

tells the generator how to adjust its weights to produce better synthetic samples.  
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Generative Adversarial Networks are methods that use 2 deep neural networks to 

interact with each other and generate data. Its formulation is consistent with 2 

player adversarial game frameworks. One of the 2 algorithms (or networks) tries 

to learn a data distribution and produce new samples similar to the samples in the 

real data (the generator). The second algorithm (the adversary) is a classifier that 

tries to determine if the new samples generated by the generative algorithm are 

fake or real. These 2 algorithms work together to achieve an optimal outcome of 

producing better output samples.  

  

 

 

 

 

 

 

 

 

 

 

The code to implement a GAN network is presented below.    

 

Figure. A GAN network using MNIST. 
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8.1 GAN code 

In this section, the GAN code will be described. First we list the libraries that we 

need.  

 
import tensorflow as tf 

import numpy as np 

from numpy import genfromtxt 
 

Next we initialize our variables 

 
batch_size = 8 

hidden_size = 4 

 

num_steps = 5000 
display_step = 10 

 

seed = 42 

tf.set_random_seed(seed) 
 

 

We will need some helper functions such as a log estimation function.  

 

 
def log(x): 

    return tf.log(tf.maximum(x, 1e-5)) 

 
 

 

To keep things simple, instead of reading in data, we are going to generate it 

automatically. We will generate samples with a normal distribution of mean=4 

and sigma = 0.5. N is the number of samples to generate.  

These samples are for the discriminator and represent the real data.  
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class DataDistribution(object): 

    def __init__(self): 

        self.mu  = 4 

        self.sigma = 0.5 
     

    def sample(self, N): 

        samples = np.random.normal(self.mu, self.sigma, N) 

        samples.sort() 

        return samples 

 
 

 

The data from the distribution class looks like this: 

 

array([ 3.3777126 ,  3.46725909,  3.65951541,  3.81755036,  3.81998276, 

        3.92007   ,  4.28720089,  4.51158124]) 

 

 

We also provide a set of data for the generator. Think of this as noise. We set a 

range between [-range, range] but the values are random. The generator uses 

noise as input.  

 

 
class GeneratorDistribution(object): 
    def __init__(self, range): 

        self.range = range 

     

    def sample(self, N): 

        return np.linspace(  
          -self.range, self.range, N) + np.random.random(N) * 0.01 
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The data from the generator class looks like this: 

>>> generatorData 

 

array([-7.99054428, -6.2211434 , -4.43866942, -2.65729133, -0.88879437, 

        0.89649839,  2.67079517,  4.45113515,  6.22879001,  8.00656172]) 

 

 

First we define the layer function for the GAN.  

 
def layer_GAN(input, weight_shape, bias_shape): 
        w_init = tf.random_normal_initializer(stddev=1.0) 
        bias_init = tf.constant_initializer(0.0) 
        W = tf.get_variable("w", weight_shape, initializer=w_init ) 
        b = tf.get_variable("b",  bias_shape,  initializer=bias_init ) 

        return tf.matmul(input, W) + b 
 

 

With GANs we have 2 inference functions; one for the generator and one for the 

discriminator.   The inference function for the generator is: 

 

 
def inference_generator(input): 
    h1=tf.nn.softplus(layer_GAN(input,[input.get_shape()[1], 4], [4])) 
    h2 = layer_GAN(h1, [ h1.get_shape()[1], 1] , [1]) 

    return h2 
 

 

The inference function for the generator with values is: 

 

 
def inference_generator(input): 
    h1=tf.nn.softplus(layer_GAN(input,[1, 4], [4])) 
    h2 = layer_GAN(h1, [ 4, 1] , [1]) 

    return h2 
 

 

The neural network in inference_generator() looks like the following:  
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And the inference function for the discriminator is:  

 
def inference_discriminator(input): 
    h1 = tf.nn.relu(layer_GAN(input, [ 1, 8 ],[8] )) 
    h2 = tf.nn.relu(layer_GAN(h1, [8, 8] , [8])) 
    h3 = tf.nn.relu(layer_GAN(h2, [8, 8], [8]) ) 
    h4 = tf.sigmoid(layer_GAN(h3, [  8, 2  ] , [2])) 

    return h4 
 

 

Notice that the discriminator has more capacity to learn.  

The neural network in inference_discriminator() looks like the following:   

Figure. Neural network in inference_generator(). 

input output hidden 
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Figure. Deep neural network in inference_discriminator(). 

input output h1  h2  h3  
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The GAN has 2 loss functions to calculate max entropy; one for the discriminator 

and one for the generator.  

The loss for the discriminator is as follows: 

 
def loss_d_GAN(D1, D2): 

    loss_d = tf.reduce_mean(  -log(D1) - log( 1-D2  )   ) 

    return loss_d 

 
 

 

Think of the 2 parameters in loss_d_GAN as tending to 1 and 0 like so 

 
 

def loss_d_GAN(D1, D2): 

    loss_d = tf.reduce_mean(  -log(D1) - log( 1-D2  )   ) 

    return loss_d 

 
 

 

And the loss for the generator is:  

 
def loss_g_GAN(D2): 

    loss_g = tf.reduce_mean(   -log(D2)   ) 

    return loss_g 
 

 

Think of parameter in loss_g_GAN as tending to 1 like so  

 
 
def loss_g_GAN(D2): 

    loss_g = tf.reduce_mean(   -log(D2)   ) 

    return loss_g 

 
 

Next we can define the optimization function as follows:   

 
def training_GAN(cost): 
    step = tf.Variable(0) 
    optimizer = tf.train.AdamOptimizer(0.001) 
    train_op=optimizer.minimize(cost) 

1 

1 

0 
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    return train_op 
 

Once the core functions are defined, we can proceed to define our placeholders. 

We select a batch size of 8 so that x and z are data matrices of size [8, 1]. So they 

contain 8 samples with 1 feature each.   

 
## batch size  = 8 

## so x and z are data matrices of size 8 x 1 
##  8 samples with 1 feature each 

 

x = tf.placeholder(tf.float32, shape=(batch_size  , 1)) 

z = tf.placeholder(tf.float32, shape=(batch_size  , 1)) 

 
 

Now we proceed to call the core functions as shown below:  

 
with tf.variable_scope('G'): 

    output_G = inference_generator(z) 

with tf.variable_scope('D'): 

    output_D1 = inference_discriminator(x) 

with tf.variable_scope('D'): 
    output_D2 = inference_discriminator(output_G ) 

 

############################################### 

 

cost_d = loss_d_GAN(output_D1,output_D2) 

cost_g = loss_g_GAN(output_D2) 
 

############################################### 

 

train_op_d = training_GAN(cost_d) 

train_op_g = training_GAN(cost_g) 

 
 

We are almost done. All that remains is to initialize the variables and create the 

session.   

 
init = tf.initialize_all_variables() 

sess = tf.Session() 

sess.run(init) 

 
 

Before we call the main loop we need to have some training data. In this case we 

call the data generating classes we previously defined and create some data.  
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data=DataDistribution() 

gen=GeneratorDistribution(range=8) 

 
 

Finally, we can call the main loop as follows:  

 
for step in range(num_steps): 

    x_data = data.sample(batch_size) 
    z_data = gen.sample(batch_size) 
 
    ## reshape from row to column vector 
    x_reshaped = np.reshape(x_data, (batch_size, 1))   
    z_reshaped = np.reshape(z_data, (batch_size, 1))   
    res_cost_d,res_train_d = sess.run(  
             [cost_d,train_op_d], feed_dict={x: x_reshaped,z: z_reshaped}) 
     
    #update new data for generator 
    z_data = gen.sample(batch_size) 
    z_reshaped = np.reshape( z_data,  (batch_size, 1)  ) 
    res_cost_g, res_train_g = sess.run(   
                         [cost_g,train_op_g], feed_dict={ z: z_reshaped }) 
                     
    if step % display_step == 0: 
        print('{}: cost_d: {:.4f}\t cost_g: {:.4f}'.format( 

                                            step, res_cost_d, res_cost_g)) 
        print('{}: train_d {}\t train_g: {}'.format( 
                                          step, res_train_d, res_train_g)) 

 
 

And that is it! We have completed our GAN model.   

     

8.2 Some Uses of GANs 

Generative Adversarial Networks (GANs) are one of the latest and most exciting 

developments in machine learning during the last decade (Goodfellow 2014). At 

this point, the use of GANs has been focused on research for image processing 

and synthetic generation. However, several studies have looked at the application 

of GANs to cyber security problems.  
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 Currently, GANs have been used to generate works of art in the styles of 

Picasso, for instance, or they can potentially generate text that is similar to the 

styles of Shakespeare or other great authors. The application of GANs to cyber 

security is more recent but there already exists a body of work to highlight 

possible applications. In particular, the common theme is that GANs can be used 

by attackers to masquerade their efforts. Recent works have used GANs for 

password generation (Hitaj 2017) and steganography (Shi 2017). It is easy to see 

how this idea could also be extended to polymorphic viruses and synthetically 

generated network attacks.   

Understanding how attackers can use GANs to masquerade their efforts is critical 

to understanding how to develop better intrusion or malware detection systems.  

 

8.3 Summary 

In this chapter, a description of Generative Adversarial Networks was provided. 

Some sample code was addressed as well as some applications of GANs to cyber 

security.  
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CHAPTER 9: REINFORCEMENT LEARNING  

In this section of the book I will cover the topic of Reinforcement Learning. This 

is an area of machine learning somewhere between supervised learning and 

unsupervised learning. It has been extensively applied to recommender systems 

and AI-based games. Recently, it was shown that a deep Q-network, using only 

pixels and game scores as inputs, could surpass achieve a playing level 

comparable to that of professional human gamers across a set of 49 Atari games 

(Mnih et al. 2015). The main advantage of applying reinforcement learning to 

games is that games are governed by rules. You have game states (the inputs) and 

actions (output) that lead to new states and rewards (the objectives to maximize). 

Because of this, no annotation is neededand instead you rely on the rules of the 

game for feedback (e.g. instead of annotated labels).  

There are several types of reinforcement learning techniques. In this chapter, I 

will focus on getting started with Q-learning since this is the technique used in 

the Mnih et al (2015) paper I referenced above. Here, I will try to provide a 

simple intuition based description of the technique. I should note that to achieve 

the level of Q-Learning presented in the Mnih et al (2015) paper, several 

additional optimizations need to be included. However, the discussion in this 

chapter should provide a simple way to get started with Q-Learning.  

So what is Q-Learning? Q-Learning tries to learn the value of being in a given 

state (s), and taking a specific action from there.  

As I indicated, Q-learn has been applied to games. The best way to understand 

the algorithm is to analyze it from the point of view of a game. Here we will use 

Python’s OpenAI Gym module to play games. We will select the simple 

FrozenLake game environment.  
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FrozenLake is a game about crossing a frozen lake that has some cracks in the ice 

with holes and there is wind sometimes that pushes the person crossing it. The 

game is very simle and consists of a grid that is 4x4 like so.  

 

hole frozen cheese hole 

frozen frozen hole frozen 

hole frozen frozen hole 

frozen hole frozen start 

 

So, the objective is to get to the cheese without falling into a hole or being 

pushed by the wind into a hole. There are 4 moves which are up, down, right, and 

left. There is only one reward and that is to get to the cheese. However, you only 

get that reward in the future by first taking several steps on frozen blocks without 

falling in a hole. Therefore, one challenge is that you have to state your objective 

in terms of several future moves. This is accomplished using something called 

the Bellman Equation.  

The key to predicting these rewards is to know the associated reward given a 

current state and action to take. This is called a Q maping  

                                             Q (state, action) = reward 

For such a simple grid, we could just use a table. In this case our table would be 

16x4 because there are 16 possible states (position in the grid of 4x4) and there 

are 4 actions (up, down, right, left). Since we know the rules of the game and the 

layout of the grid, we can populate the table and learn the Q rewards for each 

state/action pair.  
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An example of the table can be seen below. 

 

 Up Down Left right 

State1 Q=0.6 Q=0.8 Q=0.1 Q=0.0 

State2     

State3     

State4 0  0.1  

State5     

State6   0  

State7  0.6  0 

State8   1  

State9 0    

State10  0  1 

State11   1  

State12 0.02    

State13   0.4  

State14  0.6   

State15  0.3 0  

State16  1  0 

 

Figure. Q-Learn Table 
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Now the main challenge is that we need to learn future rewards for future actions 

as we move through the grid. Here the bellman equation will help. Think if the 

bellman equation as a type of recursive equation that looks at the future state 

given a current state. The Bellman equation is as follows: 

        Q(state, action) = reward + weight * max [ Q(future_state, future_action )]    

These values can be looked up from the Table.  

The code discussed here can be downloaded from the course website or the 

github repository. In the next section, the python Q-learning code will be 

discussed which only uses a table to determine the rewards and the path to 

follow. Section 9.2 will use the same algorithm but will replace the use of the 

table with a neural network so that we can see how deep neural networks can 

improve the approach.  

 

9.1 Q-Learning using a Table 

In this section we discuss the code to implement Q-Learning using a table. This 

code makes use of the OpenAI gym library.  The libraries used can be seen in the 

next code segment.  

 

  
import numpy as np 
import gym 

 
 

 

The frozenLake game can be initialized by creating the env object as can be seen 

below. This object represents the game and holds all the parameters related to 

states, actions, rewards, and current game state.  
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env = gym.make('FrozenLake-v0')  

 
 

 

The next step is to initialize the table Q to all zeros and of size 16x4. Here 

env.observation_space.n = 16 and env.action_space.n = 4. 

 

 
 
Q = np.zeros([env.observation_space.n,env.action_space.n]) 
lr = .8 
y = .95 
num_episodes = 2000 

  
 

 

We take 2000 epochs (or episodes) and initialize some parameters lr and y. Each 

episode represents a game played. We use jList and rList to collect the number 

of steps taken per episode and the total reward per episode, respectively.  These 

are used to collect results of each game.  

 

 
 
jList = [] 

rList = []  

 
 

 

 

The following code segment goes over the main loop of the Q-learn algorithm. In 

the next code segment, the line 

                     
                  for i in range(num_episodes): 
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indicates that we are going to play num_episodes=2000 games. During these 

2000 tries we will learn the best path to take.   

 

 
 
for i in range(num_episodes): 
    s = env.reset() 
    rAll = 0 
    d = False 
    j = 0 
    while j < 99: 
        j+=1 
        zz = env.action_space.n 
        a=np.argmax(Q[s,:]+np.random.randn(1,zz) *(1.0/(i+1)))                
        s1,r,d,_ = env.step(a) 
        Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) - Q[s,a]) 
        rAll += r 
        s = s1 
        if d == True: 
            break 
    #jList.append(j) 
    rList.append(rAll) 

  
 

 

The line  

                                   s = env.reset() 

restarts the game for every episode so we can play it again and assign the initial 

state to s. The variable rAll adds up the accumulated rewards for this episode. 

The variables d and j are control variables to indicate if the game has ended and 

to count the number of steps taken.   

The code in the while loop is what allows the algorithm to learn or update the 

values in the Q table designated by the variable Q. To take the first step we need 

to pick an action to follow. We do this with the following lines of code 

 

              zz = env.action_space.n 
        a=np.argmax(  Q[s,:]+np.random.randn(1,zz) *(1.0/(i+1))  )                                   
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The variable zz is the size n of all actions in the game (up, down, left, right) 

which in this case is 4. The statement Q[s, :] selects the current Q values 

(rewards) associated with state s. The statement  

 

                                         np.random.randn(1,zz) *(1.0/(i+1))   

 

adds randomness to the 4 Q values for the current state. Basically, you randomly 

increment the Q values for the current state and then select the highest one with  

                                        np.argmax() 

by selecting the highest Q value you determine what action (a) you take given the 

current state.  

Once the action a is selected, we can proceed to evaluate it in the game to obtain 

our new state (position) and the reward (did we fall in a hole or advanced to a 

frozen block). We do this with  

 

                                        s1,r,d,_ = env.step(a) 

 

here, s1 is the new state (position) and r is the reward. The parameter d indicates 

end of the game. Given this new information about the result of our action, we 

can proceed to update the Q-table with our new resuts and new knowledge about 

the state of the game. This is done with the statement  

                  Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) - Q[s,a]) 

In this statement, Q[s, a] contains the current Q value (reward) associated with 

the state s and the action a. This is the Bellman equation which can be viewed as 
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                         next_s_Q = lr*(r + y*np.max(Q[s1,:]) - Q[s,a]) 

              Q[s,a] = Q[s,a] + next_s_Q 

 

next_s_Q contains the current reward for state s plus the maximum reward for 

the next state s1.   The parameters lr and y are weights to control the importance 

of the next state’s reward when updating the current states reward (Q value).  

We can think of this parameter  

                                                 - Q[s,a] ) 

as a regularization parameter.  

At this point we are almost done and we can proceed to accumulate our results. 

The statement  

 
        rAll += r 
         
         

accumulates the total rewards. The statement 

          s = s1 

assigns the current state s1 to s. The line 

 
              if d == True: 
            break 

 

ends the game if d indicates end of game. The statement 

 
                   jList.append(j) 

 

accumulates the number of steps taken to reach end of game. The statement  

                   rList.append(rAll) 

appends rewards per game to a list so that they can be viewed later.  
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print "Score over time: " +  str(sum(rList)/num_episodes)  

 
 

 

That is it. We have finished our discussion of Q-learn with tables on the 

frozenLake game. Now we can proceed to replace the table with a neural 

network. 

    

9.2 Q-Learning using a Neural Network  

Now that we understand the frozenLake game with a table, we can proceed to 

replace the table with a neural network. It is important to note here that the 

weigths matrix W in the neural network will now represent the Q table.  

In this section of the chapter I will only discuss the parts that are different from 

the previous implementation. 

First we include the libraries as can be seen below. Notice we now add 

Tensorflow. 

 

  

import gym 
import numpy as np 
import random 
import tensorflow as tf 
import matplotlib.pyplot as plt 

  
 

 

We create the game with the env object.  
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env = gym.make('FrozenLake-v0')  

 
 

 

Next, we define our familiar neural network functions inference(), loss(), and 

train(). The function inference() creates W which is our new Q table. Notice the 

dimensions of W are 16x4 because we have 16 states in the game and 4 actions. 

Qout (our predicted y in previous chapters) is the result of a matmul operation 

between inputs1 (our states) and W (the weiths or Q values in this case).  

With  

                predict = tf.argmax(Qout,1) 

we select the action (a) to take. Here is the code for the inference function.  

 

  

def inference(inputs1): 
    W = tf.Variable(tf.random_uniform([16,4],0,0.01)) 
    Qout = tf.matmul(inputs1,W) 
    predict = tf.argmax(Qout,1) 
    return predict, Qout, W 

  
 

 

As can be seen from the previous code, the network looks like the figure below. 

It is important to note that this is a basic architecture and that much more 

complex deep architectures with different activation functions could be used such 

as architectures with many hidden layers or convolutional neural networks, etc.  
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Figure. Q-Learning network. 
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The loss function is Least Squares Estimation which is the same as linear 

regression! Here, basically,we compare Current_Q to estimated_Q and try to 

minimize the error.  

 

  

def loss(nextQ, Qout): 
    loss = tf.reduce_sum(tf.square(nextQ - Qout)) 
    return loss 

  
 

 

The optimization is nothing more than the very familiar Gradient Descent with a 

learning rate of 0.1.  

 

  
def train(loss): 
    trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1) 
    updateModel = trainer.minimize(loss) 
    return updateModel  

  
 

 

I leave evaluate() for the reader to complete as an exercise.  

 

  

def evaluate(): 
    print "evaluate" 

  
 

 

In the next statement we initialize the placeholder to hold the data. The 

placeholder inputs1 holds the one hot encoded vector representing the state of 

the game. The placeholder nextQ is used to store the one hot encoded vector of 

the 4 possible rewards for each action to take.   
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tf.reset_default_graph() 
 
inputs1 = tf.placeholder(shape=[1,16],dtype=tf.float32) 
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32) 

  
 

 

Next, we call the core functions like so 

  

  

predict, Qout, W = inference(inputs1) 
cost = loss(nextQ, Qout) 
trainOp = train(cost) 

  
 

 

Now we are ready for the main loop. We initialize the variables in the graph and 

a few parameters.  

 

  
init = tf.initialize_all_variables() 
y = 0.99 
e = 0.1 
num_episodes = 2000 

  
 

 

Then we create lists to contain total steps taken per episode (game) and total 

rewards per game.  

 

 
 
jList = [] 
rList = [] 
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Finally, we are ready for the main loop which is shown in the next code segment 

below.  

 

  
with tf.Session() as sess: 
    sess.run(init) 
    for i in range(num_episodes): 
        s = env.reset()    
        rAll = 0 
        d = False 
        j = 0 
        while j < 99: 
            j=j+1 
            a,allQ = sess.run( [predict,Qout],  feed_dict= 

{inputs1:np.identity(16)[s:s+1]}) 
 
            s1,r,d,_ = env.step(a[0]) 
            Q1 = sess.run(Qout, feed_dict= 

{inputs1:np.identity(16)[s1:s1+1]}) 
 
            maxQ1 = np.max(Q1) 
            targetQ = allQ 
            targetQ[0,a[0]] = r + y*maxQ1 
            _,W1 = sess.run( [trainOp, W], feed_dict= 

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ}) 
 
            rAll += r 
            s = s1 
            if d == True 
                break 
        jList.append(j) 
        rList.append(rAll) 

  
 

 

As an be seen in the code segment below, we run the main loop 2000 times 

(num_episodes) which means that we play 2000 games. Each time we play a 

game, we reinitialize the board ( s = env.reset()) and initialize the rewards 

variable (rAll) to zero. The variable j is the counter for the current step and d is 

used to determine in the game is over (win or loss).  

 



 

197 

 

    for i in range(num_episodes): 
        s = env.reset()    
        rAll = 0 
        d = False 
        j = 0 
         

for every game iteration we run the following while loop. This while loop is the 

main code that helps us to learn that Q values and traverse the board (e.g. play 

the frozen lake game).  

 

       while j < 99: 
            j=j+1 
            a,allQ = sess.run( [predict,Qout],  feed_dict= 

{inputs1:np.identity(16)[s:s+1]}) 
 
            s1,r,d,_ = env.step(a[0]) 
            Q1 = sess.run(Qout, feed_dict= 

{inputs1:np.identity(16)[s1:s1+1]}) 
 
            maxQ1 = np.max(Q1) 
            targetQ = allQ 
            targetQ[0,a[0]] = r + y*maxQ1 
            _,W1 = sess.run( [trainOp, W], feed_dict= 

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ}) 
 
            rAll += r 
            s = s1 
            if d == True 
                break 
         

We perform 99 steps since it should not take more than 99 steps to traverse the 

frozen lake. If it does, the game should end. The first line in the while loop is 

used to increment the steps  

 

            j=j+1 
             
        

after incrementing the steps, we proceed to perform our first session run 

operation to train the Tensorflow graph. Here we call predict and Qout from the 

inference() function calls.  
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      a,allQ = sess.run( [predict,Qout],  feed_dict= 
{inputs1:np.identity(16)[s:s+1]}) 

 
             

The statement  

            np.identity(16)[s:s+1] 

takes the current state in the variable s and converts it into a one-hot encoded 

representation. For instance, if the current state is 4, then the one-hot encoded 

representation (of size 16) looks like this 

                                     [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

The next step is to take the predicted action in “a” and run it through the game. 

We use a[0] instead of just a because a is a tensor. Assuming the action is 1 

(down), printing a alone will result in  

         [1] 

Whereas, printing a[0] will result in  

          1 

So the below statement runs the action through env.step() and this function 

returns the new state s1 which is the new position in the frozen lake grid, r is the 

reward associated with the step s (for instance r=0.43) , and d indicates if the 

game is over (found the cheese or fell in the frozen lake).  

 

      s1,r,d,_ = env.step(a[0]) 
 
 

with the new state s1, we proceed to run the Tensorflow graph again with session 

run.  Here we call Qout again using s1.  
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Recall that Qout is 

               Qout = tf.matmul(inputs1, W) 

in the inference function. In this case, inputs1 is the one-hot encoded vector of 

size 16 that represents state s1.  

 
 
     Q1 = sess.run(Qout, feed_dict= {inputs1:np.identity(16)[s1:s1+1]}) 
 

             

So Q1 will now contain the 4 neuron vector with the Q values for all 4 actions 

given state s1. Currently, the vector allQ for state s looks like this with some 

values 

 

 allQ   =   [     0.0 

                      0.3 

                      0.4 

                      0.02    ] 

 

And Q1 for state s1 looks like this for some values 

 

   Q1   =     [     0.9 

                        0.1 

                        0.04 

                        0.7    ] 

 

Therefore, we have predicted Q values for state “s” and predicted Q values for 

state “s1”.   
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Next, we proceed to select the highest value in Q1. In this case maxQ1 gets 

assigned the value 0.9 from our previous example (maxQ1=0.9). The code is as 

follows  

 

            maxQ1 = np.max(Q1) 
             
             

now we use a new variable targetQ which will be equal to the bellman equation. 

We assign to it allQ 

       targetQ = allQ 

so that targetQ is now 

 

targetQ   =   [     0.0 

                          0.3 

                          0.4 

                          0.02    ] 

 

Recall that a[0] holds the index of the action taken (e.g. down or 1). Therefore, in 

the vector targetQ we select that position ( targetQ[0, 1] ) and add to it the 

reward value r and maxQ1 times some y parameter. Recall that the Bellman 

equation looks like this: 

      Q(state, action) = reward + weight * max [ Q(future_state, future_action )]    

The code is as follows 

 

             
            targetQ[0,a[0]] = r + y*maxQ1 

 

and with values this looks like the following 
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             targetQ[0,1] = 0.43 + 0.99*0.9 

after this update rule targetQ has been modified from  

 

           targetQ   =   [     0.0 

                                      0.3 

                                      0.4 

                                      0.02    ] 

 

to 

 

            targetQ   =   [     0.0 

                                       1.321 

                                       0.4 

                                      0.02    ] 

 

interestingly, only one of the 4 values in targetQ is updated using the bellman 

equation. The other values remain the same. Finally, we do a final update of the 

Tensorflow graph by calling trainOp with session run and state “s”. 

Additionally, the placeholder nextQ is assigned the result from the Bellman 

equation targetQ.  

 

      _,W1 = sess.run( [trainOp, W], feed_dict= 
{inputs1:np.identity(16)[s:s+1],nextQ:targetQ}) 

 
             

This is important because nextQ will be used in the loss function with the next 

predicted Qout like so 
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predict, Qout, W = inference(inputs1) 
cost = loss(nextQ, Qout) 
trainOp = train(cost) 

  
 

 

Finally, the last peace of code adds up the rewards, assigns the new state s1 to s, 

and checks to see if the game is over.  

            rAll += r 
            s = s1 
            if d == True 
                break 

 

once you exit the while loop, the last part is to append the results of the current 

game to jList and rList.   

 

        jList.append(j) 
        rList.append(rAll) 

 

Well, that is it with the algorithm discussion. Finally, we print our results and 

plot them.  

 

  
print "Percent of succesful episodes: " +     

str(sum(rList)/num_episodes) + "%" 
 
plt.plot(rList) 
plt.show() 
plt.plot(jList) 
plt.show() 
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That is it. We have completed implementing our Q learning algorithm with a 

neural network. In the next section we will add a simple improvement to the code 

that will improve performance. 

    

9.3 Q-Learning using a Neural Network and Randomness  

In the previous section we described the code to implement Q-learning with a 

neural network on the frozen lake game. That was the simplest implementation of 

it.  

 

  
with tf.Session() as sess: 
    sess.run(init) 
    for i in range(num_episodes): 
        s = env.reset()    
        rAll = 0 
        d = False 
        j = 0 
        while j < 99: 
            j=j+1 
            a,allQ = sess.run( [predict,Qout],  feed_dict= 

{inputs1:np.identity(16)[s:s+1]}) 
 
            if np.random.rand(1) < e: 
                a[0] = env.action_space.sample() 
 
            s1,r,d,_ = env.step(a[0]) 
            Q1 = sess.run(Qout, feed_dict= 

{inputs1:np.identity(16)[s1:s1+1]}) 
 
            maxQ1 = np.max(Q1) 
            targetQ = allQ 
            targetQ[0,a[0]] = r + y*maxQ1 
            _,W1 = sess.run( [trainOp, W], feed_dict= 

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ}) 
 
            rAll += r 
            s = s1 
            if d == True: 
                e = 1./((i/50) + 10) 
                break 
        jList.append(j) 
        rList.append(rAll) 
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To improve the results, we can add a few lines of additional code which will 

allow the algorithm to better converge and learn better Q-values. The additions 

are simple and basically relate to adding randomness to the code. Notice in the 

code above that a few new statements have been added. 

These new lines add randomness to the selection of the next action to take. The 

idea is that add the beginning of the learning process, the action prediction 

function may not be very good. Therefore, picking an action randomly at the 

beginning may be better than picking actions with the inference() function. This 

is reflected in the code segment below.  

 
            if np.random.rand(1) < e: 
                a[0] = env.action_space.sample() 
 
 

a random number is obtained and compared to e. If less than e, the action a[0] is 

selected randomly  

 
           a[0] = env.action_space.sample() 

 

 

as the algorithm improves and the Q values are better, the value of e can be 

adjusted so that action is more often selected with the inference function and not 

with the random function 

 
           a[0] = env.action_space.sample() 

 

 

The code can be seen here.  
 
             
            if d == True: 
                e = 1./((i/50) + 10) 
                break 
         

 where   
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          e = 1./((i/50) + 10) 

 

adjusts the value of “e”.  

 

9.4 Summary 

In this chapter we have discussed the Q learning algorithm as part of the larger 

topic of Reinforcement Learning using tables and neural networks.  
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CHAPTER 10: CONCLUSIONS AND FINAL 

THOUGHTS 

In this book I have only begun to scratch the surface on deep learning 

programming and methodologies. I hope that these examples and discussions 

helped you to improve your deep learning coding skills and furthered your 

interest in machine learning in general. There are many more deep learning 

methodologies such as recurrent neural networks that you may want to pursue as 

well. The Tensorflow website at www.tensorflow.org may be a good starting 

point to continue your studies.  

In this final chapter, I want to address a few loose ends relevant to Tensorflow 

and I will present a few closing thoughts.  

10.1 Benchmarking Tensorflow 

In this section I want to address benchmarking. Tensorflow was made to be used 

with GPUs and CPUs. If you want to test the performance of your processors, 

one way to do it is with the following code. In the following code you are 

performing a matrix multiplication using  

           tf.matmul(a, b) 

The important aspect is that you can select the device to use. For instance, the 

following  

       with tf.device('/cpu:0')  

tells Tensorflow to use the CPU. In contrast, using   

       with tf.device('/gpu:0')  

would tell Tensorflow to perform the computations using the GPU. 



 

207 

 

import Tensorflow as tf 

with tf.device('/cpu:0'): 

   a = tf.zeros(shape=[10000,1000], dtype=tf.float32)  

   b = tf.zeros(shape=[1000,1000], dtype=tf.float32)  

   c = tf.matmul(a, b) 

# Creates session with log_device_placement set to True 

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))  

                                   

# Runs the op. 

for i in range(200): 

    print  i 

    print sess.run(c) 
 

 

 

10.2 Conclusions 

Since 2007, computational power has certainly improved and today machine 

learning can take advantage of these more powerful processors to process large 

amounts of data.  In the following table we can see that there are many types of 

processors. Some are old and traditional and some are new and still experimental. 

The most widely used processor before 2007 was the CPU. Now, GPUs are the 

most exciting and promising because they allow deep neural networks to learn 

the model parameters in very short periods of time.     

The future may bring even more types of processors which will further 

improve machine learning and deep neural networks. Currently, several 

companies are starting to develop their own neural processors. Google, for 

instance, has developed the Tensor Processing Unit (TPU). This processing unit 

accelerates deep learning calculations on their servers. 


